A thread (or lightweight process) is the basic unit of CPU utilization; it consists of:
- program counter
- register set
- stack space

A thread shares with other threads belonging to the same process:
- code section
- data section
- OS resources (e.g., files, signals)

Collectively called a task.

If a process has multiple threads of control, it can perform more than one task at a time - multithreading.

Multithreading Examples
- A web browser might have one thread display images or text while another thread retrieves data from the network.
- A web server accepts client requests for web pages, images, sounds, etc.
- A word processor may have a thread displaying graphics, another thread for responding to keystrokes from the user, and a third thread for performing spelling and grammar checking in the background.

Single and Multithreaded Processes

[Diagram showing single-threaded and multithreaded processes]
Benefits

- **Responsiveness** – multithreading an interactive application may allow a program to continue running even if part of it is blocked, for instance: web browser could still allow user interaction in one thread while image was being loaded in another thread.
- **Resource Sharing** – allows an application to have several different threads of activity within the same address space.
- **Economy** – more economical to create than process creation, because threads share resources.
- **Utilization of multiprocessor Architectures concurrency**

Kernel Threads

Supported by the Kernel

Examples
- Windows XP/2000
- Solaris
- Linux
- Tru64 UNIX
- Mac OS X
- Mach, OS/2

User Threads

Thread management done by user-level threads library

Supported above the kernel, via a set of library calls at the user level.

Threads do not need to call OS and cause interrupts to kernel - fast.

Example thread libraries:
- POSIX Pthreads
- Win32 threads
- Java threads

Multithreading Models

- Many-to-One
- One-to-One
- Many-to-Many
Many-to-One

Many user-level threads mapped to single kernel thread
Examples:
 Solaris Green Threads
 GNU Portable Threads

One-to-One

Each user-level thread maps to kernel thread
Examples
 Windows NT/XP/2000
 Linux
 Solaris 9 and later
Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads.

Allows the operating system to create a sufficient number of kernel threads.